Mold Flow Analysis #### Dialogue目录 - Product Info.产品信息 - Material Data & Molding Parameter 材料信息和注塑参数 - Product Thinkness Anysis 产品壁厚分析 - Injection Gate Design 进胶口设计 - 3D Mesh Analysis 3D 网格分析 - Cooling Channel Design Analysis 冷却水道设计分析 - Fill time (Animate & Contour) 填充时间 (动态+轮廓) - Flow Front Temperature 前端温度 - Pressure at the V/P switchover 转保压压力 - Injection pressure 注塑压力 - Clamp Force 锁模力 - Weld lines 熔接线 - Air Traps 困气 - Cooling Channels 冷却管道 - Mould Surface Temperature 模具表面温度 - Time to freeze 产品冷却时间 - Volumetric shrinkage at ejection 顶出时体积收缩 - Deflection 变形 - Conclusions and suggestions 结论和建议 #### Product Info.产品信息 Part Name 产品名称:Panel Mold Number 模具编号:TBD Prepared by 报告制作: asher wang Date Prepared 日期: may 29th 2017 Version 版本: Rev.1 Actual of cavities 实际出模数: 2 Number of cavity analysis 分析时出模数: 1 Part Material 塑胶材料:PC+ABS Type of analyses 分析类型: Cool + Flow + Warp | Analysis Purpose | Validate potential problem after the part and mold design 验证可能存在的问题在产品和模具设计完成后 Check the fill balance pattern, weld line, air traps, and predict the needed clamp force and injection pressure, warpage. 指出流动模式,熔接线位置,困气位置,所需锁模力和注塑压力,产品变形 Estimate cycle time 评估周期 | |-------------------------|---| | Input Model Description | ➤ The runner system and cooling circuits is simulated as the mold design. 根据模具设计建立流道和运水为分析 | | Result Required | Filling result 流动结果 Cycle time result 周期结果 Warpage result 变形结果 | ## Product Info.产品信息 #### Part Details and Tool Description | Part Name:产品名称 | 1 | |----------------------------------|--------------| | CAD File / Version/ Date 模型格式和版本 | X-T | | Part Volume 产品体积 | 40.7(1) cm^3 | | Nominal Wall Thickness 产品平均厚度 | 1.7mm | | Tool Description 出模数 | 1Cavities | | Injection machine Tonnage 注塑机台 | 1 | #### Process Setup | Material 塑胶材料 | PC+ABS | | |---|--|--| | Injection time 注塑时间 | 0.8s | | | Material temp 材料温度 | 290 [deg.c] | | | Mold temp 模 具温 度 | 75 [deg.c] | | | Velocity/Pressure Transfer (% volume) 转保压体积 | 98 % | | | Packing Pressure/Time 保压压力/时间 | 80%filling pressure /5s, 80%filling pressure /3s | | | Project Area 产品投影面积 | 94(1) cm^2 | | #### Material Data & Molding Parameter 材料信息和注塑参数 ■ The material datas are from supplier is in moldflow database and shown in the pictures below | Material Property | | | | | | |--|--|---|---------|--|--| | PC+ABS (Cycoloy XCY630 from SABIC Innovative Plastics US, LLC) | | Melt Temperature Range (°C) | 275~300 | | | | Solid Density (g/cm3) | 1.1453 Mold Temperature Range (°C) | | 60~90 | | | | Maximum Shear Rate (1/s) | 60000 | Ejection Temperature (°C) | 103 | | | | Maximum Shear Stress (MPa) | 0.4 Absolute Maximum Melt Temperature (°C) | | 340 | | | | MFR (g/10min) (275°C/ 5 Kg) | 400 | 400 Recommended Melt Temperature (°C) 290 | | | | | Filler | Unfilled | Recommended Mold Temperature (°C) 75 | | | | Please provide an accurate material list #### Product Thinkness Anysis 产品壁厚分析 - This above plot used different color to show the thickness of this part. - We can see that: the average thickness of this part is 1.7mm. - Total part weight = 45g (1), the cold runners weight =6.4g ## Injection Gate Design 进胶口设计 - The mold is the cold runner and point gate - The runner layout was based on the 3D drawing. #### 3D Mesh Analysis 3D 网格分析 ■ Specification: the type of model used 3D mesh analysis ## Cooling Channel Design Analysis 冷却水道设计分析 ■ Coolant was specified as water 75C, Cooling time as 25 s ### Fill time (Animate & Contour) 填充时间 (动态+轮廓) ■ This result shows how the melt flows through the cavity. Fill time is about: 0.8sec. Shift+F5, you will see the animated flow • • ### Fill time (Animate & Contour) 填充时间 (动态+轮廓) ■ This result shows how the melt flows through the cavity. Fill time is about: 0.8sec. Shift+F5, you will see the animated flow #### Fill time (Animate & Contour) 填充时间 (动态+轮廓) Fill time = 0.8441[s] ■The area with dense lines in the above picture represents the area with lower flow velocity; and the area with sparse lines represents the area with higher flow velocity._ • • ### Flow Front Temperature 前端温度 Temperature at flow front = 304.6[C] - Above figure showed the temperature at the part. Melt enters cavity at 290C - The polymer recommended temperature range: 275~300C - From above plot we can see that the temperature drop on the part are in this polymer recommend rang. #### Pressure at the V/P switchover 转保压压力 ■ Above figure shows the pressure distribution through the flow path inside the mold, at the V/P switchover of the filling phase. #### Injection pressure 注塑压力 - The maximum value is 60Mpa, Injection pressure specified at Packing is 48 Mpa - The filling pressure are within moldflow recommend value which can acceptable. Packing profile plot • • ### Clamp Force 锁模力 ■ The maximum clamp force is 35Tons. 最大锁模力为 35tonne. ### Weld lines 熔接线 #### Air Traps 困气 ■ The result shows areas of the cavity that may require additional venting, it should be viewed in combination with the filling ■ Most of the air trapped appear at the edge of part and the tip of ribs that is easy to vent. • • ### Cooling Channels 冷却管道 ■ which is in Moldflow Guidelines (temperature rise not to exceed 2~3 C). #### Mould Surface Temperature 模具表面温度 ■ From the analysis, the mould temperature is expected to be 72.22~102C for cavities which out of the target 60~90 C temperature. #### Time to freeze 产品冷却时间 ■ The result shows the amount of time taken for all of the elements in the part to freeze to ejection temperature. Time to reach ejection temperature, part:Probe Plot Time = 55.00[s] ■ The time to reach ejection temperature is about 20s for 100 % melt volume freezed, #### Volumetric shrinkage at ejection 顶出时体积收缩 ■ The maximum shrinkage at ejection is 10.7%. The minimum shrinkage at ejection is 0.19 %. • • ### Volumetric shrinkage at ejection 顶出时体积收缩 ■ The maximum shrinkage at ejection is 6.74%. The minimum shrinkage at ejection is 0.65 %. ## Volumetric shrinkage at ejection 顶出时体积收缩 Sink marks estimate Scale Factor = 1.000 AUTODESK Scale (100 mm) -3 x -15 -87 ■ Sink marks estimate:0.1mm ■ Note: warpage shape magnified 5X for display purposes. (The undeformed part display transparent) Deflection, all effects:Deflection Scale Factor = 5.000 ■ The maximum shrinkage and deflection value is about 1.05mm. ■ Note: warpage shape magnified 5X for display purposes. (The undeformed part display transparent) the shrinkage and deflection moved inward about :-0.63~0.31mm. ■ Note: warpage shape magnified 5X for display purposes. (The undeformed part display transparent) the shrinkage and deflection moved inward about :-1.05~0.94mm. ■ Note: warpage shape magnified 5X for display purposes. (The undeformed part display transparent) the shrinkage and deflection moved upward and downward about -0.26~0.47mm. #### Conclusions and suggestions 结论和建议 #### From the above analysis - The cycle time is about: 0.8 (filling) +30(cooling + packing) + 5 (open & eject) =36sec - This part will not have filling problem due to the pressure are within the moldflow recommend range. - ⇒ There is Weld lines on the surface of the product. (refer page 17) - Most of the air trapped appear at the edge of part and the tip of ribs that is easy to vent. (refer page 18) - the surface is sink mark. (refer page 22~24) - ⇒ The deflection of X Y Zdirection is acceptable (refer page 25~ 28) | Fill time | Injection pressure | Volumetric shrinkage | |-----------|--------------------|----------------------| | 0.8sec | 60Mpa | 0.19~10.7% | | Shrinkage and deflection : X Component | Shrinkage and deflection : Y Component | Shrinkage and deflection : Z Component | |--|--|--| | -0.63~0.31mm | -1.05~0.94mm | -0.26~0.47mm | Please provide an accurate material list